
Burn-Down Patterns

You're gaming
the system!

Accepting too late Ambitious team Submissive team Capacity changes

Change of
priorities

External
dependencies

Dynamic backlog Bad refinement Burn-what? GoodGoodExcluding work

Punished team

The Product Owner accepts
stories only at the end of
the sprint. She is either not
available during the sprint,
doesn't accept stories on a
daily basis or overrules
decisions of a proxy-PO.

The problem: If stories are
rejected, there is no time
left to fix them in the sprint.
The team lacks a timely
feedback on how much is
really done, thus depriving
them of the chance to
detect and fix problems
early on.

Fix: Accept stories
immediately. You could do
this as "in-sprint inspection"
right after your Daily
Scrums.

You might have bitten off
more than you could chew.

Fix: Learn the lesson for
your next planning and
commit to fewer user
stories.

It's unlikely that you really
make exactly the same
progress each day. You
might make the numbers fit
the expectations out of fear
or pressure.

Fix: Be honest to yourself.
This burn-down chart is
supposed to help you, not
to punish you.

A critical issue interrupted
your plans. You had to fix
this first.

Fix: Try to avoid such
interruptions. If priorities
changed significantly,
consider aborting the sprint.

You have dependencies
outside of your sphere of
influence.

Fix: This has to be fixed on
an organisational level.
Make sure the
organizational structure fits
the product or service
architecture. Sometimes a
restructuring of teams or a
refactoring of the
architecture can help.

You let yourself be
pressured into an
unrealistic schedule.

Fix: Speak up next time and
take responsibility for your
estimations.

Team members get sick or
leave the team.

Fix: Not much you can do.
Increase the resillience of
the team by developing T-
shaped characters.

You failed to refine user
stories accurately. Not well
understood requirements
lead to trouble during
implementation.

Fix: Refine and estimate
thoroughly. Ask the Product
Owner enough questions to
fully understand the
requirements. If you lack
knowledge in the business
domain or technology used,
consider training.

You likely pay no attention
to your burn-down. You
probably do not split work
into small chunks or deliver
working functionality
frequently.

Fix: Instead of dividing work
as it comes at you, try to
plan and split work in
advance. Watch your burn-
down – it is there to help
you.

You might not have all work
you do on your backlog.
Are you missing QA or bug
fixing?

Fix: Include all work for the
product in your backlog.
Many things can be part of
user stories, others might
be separate backlog items.

This is how a chart of a
good sprint could look like.
It usually starts slow but
then speeds up as stories
get done.

Your team might have been
punished in the past for not
reaching ambitious goals.
This can lead to
conservative planning with
huge buffers.

Fix: Remember that you
cannot predict the future –
you merely forecast. Reality
can be different and it need
not be anybodies fault.
Don't punish the team for
not reaching the sprint goal.

Urgent requirements are
added to the sprint backlog
mid-sprint. At the same
time the original scope is
not reduced.

Fix: Consider a sprint
backlog immutable by
default. If an urgent task
comes in, remove other
stories from the sprint
backlog. If your current
sprint goal becomes
obsolete by drastically
changed priorities, consider
cancelling the sprint.

matthiasorgler.com/burn-down-patterns

Patterns visible in sprint burn-down charts can tell you a lot
about your team. Here are a few typical patterns and what you
can learn from them. This is by no means an exhaustive list.

CC BY-SA Matthias Orgler – matthiasorgler.com/burn-down-patterns

CC BY-SA Matthias Orgler

